
Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi,
Alessandra Scafuro, Sharon Goldberg

Scaling Bitcoin Milan 2016 1

TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous

Payment Hub

Introduction

TumbleBit can be used as a classic Bitcoin tumbler:
● k-anonymity within a mix,
● 4 transactions confirmed in 2 blocks (~20mins)

TumbleBit is:
1. Private: Unlinkable Bitcoin payments and k-anonymous mixing,
2. Untrusted: No one including Tumbler can steal or link payments.
3. Scalable (payment hub): scales transaction velocity and volume.
4. Compatible: Works with today's Bitcoin protocol.

When TumbleBit is used as a payment hub:
● Unlinkability within the payment phase,
● Payments confirmed in seconds,
● Payments are off-blockchain,

... don’t take up space on the blockchain. 2

Two ways to use TumbleBit:

Why is compatibility hard?
Our protocol must work with highly constrained Bitcoin scripts
which provide two very limited cryptographic operations.

Introduction

TumbleBit can be used as a classic Bitcoin tumbler:
● k-anonymity within a mix,
● 4 transactions confirmed in 2 blocks (~20mins)

TumbleBit is:
1. Private: Unlinkable Bitcoin payments and k-anonymous mixing,
2. Untrusted: No one including Tumbler can steal or link payments.
3. Scalable (payment hub): scales transaction velocity and volume.
4. Compatible: Works with today's Bitcoin protocol.

When TumbleBit is used as a payment hub:
● Unlinkability within the payment phase,
● Payments confirmed in seconds,
● Payments are off-blockchain,

... don’t take up space on the blockchain. 3

Two ways to use TumbleBit:

Why is compatibility hard?
Our protocol must work with highly constrained Bitcoin scripts
which provide two very limited cryptographic operations.

When used as a payment hub, TumbleBit helps scale
Bitcoin’s transaction velocity (faster payments),

and transaction volume (higher maximum payments).

Transaction: Escrow2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub

4

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

A payment hub: routes payment channels.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

Transaction
Claim2

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2

σ
1

Alice signs Claim1 Payment Hub signs Claim2

σ
1

σ
2

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

HTLCs: Claim

X

Transaction: Escrow2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub

5

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

A payment hub: routes payment channels.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

Transaction
Claim2

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2

σ
1

Alice signs Claim1 Payment Hub signs Claim2

σ
1

σ
2

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?

HTLCs: Claim

X

Transaction: Escrow2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub

6

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

A payment hub: routes payment channels.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

Transaction
Claim2

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2

σ
1

Alice signs Claim1 Payment Hub signs Claim2

σ
1

σ
2

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

HTLCs: Claim

X

Hash locks provide this property.

Transaction: Escrow2
Output Script: 2-of-2 multisig
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub

7

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

A payment hub: routes payment channels.
But what if the hub is malicious

and takes Alice2’s bitcoin
and gives Bob3 nothing?

Transaction
Claim1

H(X) = Y?

Transaction
Claim2

H(X) = Y?

Unidirectional Payment Channel
 Alice → Payment Hub

Unidirectional Payment Channel
 Payment Hub → Bob

Transaction
Escrow1

Transaction
Escrow2

σ
2σ

1

Alice signs Claim1 Payment Hub signs Claim2

σ
1

,X σ
2
 ,X

Payment Hub and Bob could sign and post both claim transactions,
paying 1 Bitcoin from Alice to Bob via the Payment Hub.

...But what if the hub is malicious,
and takes Alice’s bitcoin and doesn’t pay Bob?Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

Hash locks provide this property.

I don’t know x, so…
I can’t spend Claim2.

Alice, learn x to pay me.Bob, the value of x is....

Thus, using hash locked transactions or HTLCs a payment hub can prevent theft,
however this is provides no privacy against the payment hub.

Background: HTLC Privacy

8

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

Payers

Alice
1

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Claim

H(x1) = Y?

Transaction
Claim

H(x2) = Y?

Transaction
Claim

H(x2) = Y?

Transaction
Claim

H(x3) = Y?

Transaction
Claim

H(x3) = Y?

Transaction
Claim

H(x1) = Y?

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

No privacy
from payment hub.

Background: HTLC Privacy

9

Bob
1

Alice
1

Tumbler

Sign(Alice-SK, Claim2)

Sign(Alice-SK, Claim3)

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

Sign(Alice-SK, Claim1)

Bob

Bob
3

Alice

Alice
3

Payment
Hub

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

Payers

Alice
1

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

Transaction
Claim

H(x1) = Y?

Transaction
Claim

H(x2) = Y?

Transaction
Claim

H(x2) = Y?

Transaction
Claim

H(x3) = Y?

Transaction
Claim

H(x3) = Y?

Transaction
Claim

H(x1) = Y?

Transaction
Escrow

Transaction
Escrow

Transaction
Escrow

The main idea behind TumbleBit is a protocol which
provides atomicity but is also unlinkable (i.e. private).

Think of it like Unlinkable or Private HTLCs.

?????

?????

?????

 Background: RSA Puzzles
● An RSA Puzzle is just a “textbook RSA encryption” of some value ϵ:

 RSA(PK, ϵ) = z

● Only the party that knows SK can solve RSA puzzles:
 RSA-1(SK, z) = RSA-1(SK, RSA(PK, ϵ)) = ϵ

2. Bob2 blinds his puzzle
and requests a solution.

z2

RSA blinding can be used to blind RSA puzzles

1. Tumbler issues two puzzles.

3. Tumbler solves
the blinded puzzle
and generates a
blinded solution ϵ*.

ϵ*

z*

4. Bob2 finds the solution
to z2 by unblinding ϵ*.

ϵ2 = Unblind(ϵ*)

Tumbler can not link the blinded RSA puzzle it solves z*
to any of the RSA puzzles it issued (z1, z2).

Tumbler

Bob
1

Bob
2

z1

z2

z* = Blind(z2)
RSA-1(SK,z*) = ϵ*

Bob2 learns the solution ϵ2 to the puzzle z2

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Puzzle Promise

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Transaction

σ for .

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Puzzle Promise

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Transaction

σ for .

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

 If Tumbler corrupts z, c, X,or q it can cheat Alice or Bob!

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Puzzle Promise

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Transaction

σ for .

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

TumbleBit prevents this via two protocols:
Puzzle-Promise-Protocol:
Tumbler convinces Bob that the solution to RSA
puzzle z is a value ϵ which allows him learn σ.

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

 If Tumbler corrupts z, c, X,or q it can cheat Alice or Bob!

Fair exchange:
 for ϵ*

Learn ϵ get

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer for σ

Transaction

Fulfill for σ

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition:
σ such that σ is a
valid signature.

z*

X

Transaction
Offer H(x)=Y

for

Transaction
Fulfill X for

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition:
X such that
Hash(X) = Y.

Tumbler
Puzzle Promise

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA
puzzle of your choice for 1 Bitcoin.

z*

Transaction
offer

H(x) = Y

Transaction offer
 H(X) = Y for

ϵ*

Transaction

σ for .

Blind(z)

Dec(X, q)
X

Transaction fulfill
 X

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X
where Hash(X) = Y will allow her to learn ϵ*.

Alice
1

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

TumbleBit: Phases

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

+1 BTC to Tumbler

σ

Payment Channel
T:10, B1:0

Payment Channel
T:10, B2:0

Payment Channel
T:10, B3:0

Payment Channel
A1:10, T:0

Payment Channel
A2:10, T:0

Payment Channel
A3:10, T:0

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...(c,z)

Alice
1

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTC

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

TumbleBit: Phases

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

+1 BTC to Tumbler

σ

Payment Channel
T:10, B1:0

Payment Channel
T:10, B2:0

Payment Channel
T:10, B3:0

Payment Channel
A1:10, T:0

Payment Channel
A2:10, T:0

Payment Channel
A3:10, T:0

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...(c,z)

Close channel
T:5, B1:5

Close channel
T:3, B2:7

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTCPay 6 BTCPay 7 BTC

Pay 1 BTCPay 2 BTCPay 3 BTC

σ

σσ

σ

σ σ

σ σ σ

Alice
1

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTC

Close channel
T:8, B1:2

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

TumbleBit: Phases

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

+1 BTC to Tumbler

σ

Payment Channel
T:10, B1:0

Payment Channel
T:10, B2:0

Payment Channel
T:10, B3:0

Payment Channel
A1:10, T:0

Payment Channel
A2:10, T:0

Payment Channel
A3:10, T:0

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...(c,z)

Close channel
T:0, B2:10

Close channel
T:7, B3:3

Close channel
T:5, B1:5

Close channel
T:3, B2:7

Close channel
T:7, B3:3

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTCPay 6 BTCPay 7 BTC

Pay 1 BTCPay 2 BTCPay 3 BTC

σ

σσ

σ

σ σ

σ σ σ

Alice
1

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTC

Close channel
T:8, B1:2

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

TumbleBit: Phases

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

1. Escrow Phase: All payment channels setup.
2. Payments Phase (~1 month): Payers make payments.
3. Cashout Phase: Payers and payees close their payment channels.

+1 BTC to Tumbler

σ

Payment Channel
T:10, B1:0

Payment Channel
T:10, B2:0

Payment Channel
T:10, B3:0

Payment Channel
A1:10, T:0

Payment Channel
A2:10, T:0

Payment Channel
A3:10, T:0

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

(c,z),(c,z),(c,z),...(c,z)

(c,z),(c,z),(c,z),...(c,z)

Close channel
T:0, B2:10

Close channel
T:7, B3:3

Close channel
T:5, B1:5

Close channel
T:3, B2:7

Close channel
T:7, B3:3

Pay 1 BTCPay 2 BTCPay 3 BTCPay 4 BTCPay 5 BTCPay 6 BTCPay 7 BTC

Pay 1 BTCPay 2 BTCPay 3 BTC

σ

σσ

σ

σ σ

σ σ σ

 Privacy offered the TumbleBit Payment Hub

Tumbler’s view:
(1) payer of each payment, (2) # of payments each payee received.

Unlinkability def:
All interaction graphs compatible with the tumblers view are equally likely.

(7)

(3)

(5) (2)

(10)

(3)

Sent # Received

TumbleBit: Classic Tumbler

19

TumbleBit can also be a classic tumbler:

Allows users to privately move bitcoins to an unlinked fresh address.

Fresh Addr 1

Fresh Addr 2

Fresh Addr 3

Old Addr 1

Old Addr 2

Old Addr 3

This is also sometimes known as a mixing service or mix.

TumbleBit: Classic Tumbler

(c,z),(c,z),(c,z),...

(c,z),(c,z),(c,z),...

1. Escrow Phase: All payment channels setup.

2. Payments Phase (~1 month): Payers make payments.

3. Cashout Phase: payers and payees close their payment channels.

+1 BTC to Tumbler

σ

(c,z),(c,z),(c,z),...(c,z)

 σ σ σ ... σ

Alice
1

Pay 1 BTC
Close channel

T:0, B1:1

Payers

Alice
2

Alice
3

Payees

Bob
1

Bob
2

Bob
3

Payment Channel
T:1, B1:0

Payment Channel
T:1, B2:0

Payment Channel
T:1, B3:0

Payment Channel
A1:1, T:0

Payment Channel
A2:1, T:0

Payment Channel
A3:1, T:0

Close channel
T:0, B2:1

Close channel
T:0, B3:1

Close channel
T:1, B1:0

Close channel
T:0, B2:1

Close channel
T:1, B3:0

Pay 1 BTC

Pay 1 BTC

To run TumbleBit as a Classic Bitcoin Tumbler:
● Each payer just makes one payment.
● Each payee accepts only one payment.
● # of payers = # of payees.
● payer and payee pairs are the same user

Provides k-anonymity:
Where k = # of payers = # of payee.

Compared to other Tumblers
Bitcoin-Compatible

Schemes
(aka “Mixing Services”)

Vulnerable to bitcoin theft

Intermediary
breaks

anonymity

Mixing takes
hours

21

Xim

Vulnerable to DoS &
Sybil Attacks

Limited Anonymity

TumbleBit

TumbleBit: Implementation

22

We wrote a proof-of-concept implementation of the Classic
Tumbler:

● We are working on improving it and making it user friendly.
● Sourcecode and a development roadmap are available on

Github.
● We are working to improve it to make it user ready.We “tumbled” 800 payments:

 You can see the transactions on the mainnet blockchain.
TXIDs avaliable in our paper.

Our implementation is Performant (per TumbleBit payment):
● 326 KB of Bandwidth,
● Puzzle-Solver takes ~0.4 seconds to compute
● Total time depends on network latency:

No latency ~0.6 seconds.
Boston to Tokyo ~6 seconds (clear) and ~11 seconds
...(both parties use TOR)

Conclusion

23

● TumbleBit is works with today’s Bitcoin:
○ We have run TumbleBit on Bitcoin’s Blockchain (mainnet).

TumbleBit provides private scalable trustless payments
via Bitcoin.
.

1.

TumbleBit provides,
 private untrusted scalable payments via today’s Bitcoin

1. Private: Unlinkable or k-anonymous payments
2. Trustless: Tumbler can not steal or link payments.
3. Scalable (payment hub): scales Bitcoin’s transaction velocity and volume.

We have running code (for TumbleBit classic tumbler):

● Our code runs on Bitcoin’s mainnet blockchain.
● We have published our code on github.
● ...and we working to improve it and make TumbleBit easy and safe to use.

We are hiring a full time engineer (Boston),
email me if interested.

Questions?

24
Ask questions on twitter: @Ethan_Heilman

Source code + roadmap: https://github.com/BUSEC/TumbleBit

Paper: https://eprint.iacr.org/2016/575.pdf

TumbleBit: Puzzle-Solver-Protocol

25

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6)

1. A blinds:

6. Bob and Tumbler run “quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (qi,ϵi,Yi) of the real puzzles correctly Alice learns ϵ*,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

Fair exchange/contingent payment for an RSA puzzle solution to z*:
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z*
2. Tumbler reveals ϵ* if and only if Alice pays.

2. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

3. Reveals fake puzzles
by sending solutions.

5. Checks fake puzzles
values “H(X) = Y”
correctly computed.

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = 1/(280)
m = # of valid transactions = 42

n = # of invalid transactions = 42

Alice

z*

I can’t tell which B’s
are real or fake.

2. Solves/ encrypts:
 for i in m+n:
 ϵi = RSA-1(SK, Bi)
 qi = Enc(Xi, Si)
 Yi = H(Xi)

(q1,Y1),(q2,Y2),(q3,Y3),...

(P1, P2, … Pn)

(X2, X5, X11, …)
4. Reveals Xi
of fake puzzles.

6. A proves all real puzzles
unblind to same puzzle z*

(R1, R2, … Rm)

Transaction offer
 H(X1) = Y1 AND H(X3) AND H(X4) … for

Transaction fulfill
 X1, X3, X4, ...

1. Makes m real puzzles:
 for i in m: Di = Blind(z*, Ri)
...and n fake puzzles:
 for j in n: Fi = RSA(PK, Pi)

Shuffle(D1,D2 …, Dm, F1, F2, …, Fn)
= (B1,B2,B3, … Bn+m)

(X1, X3, X4, …)
7. decrypts q’s
learns ϵ*

TumbleBit: Puzzle-Solver-Protocol

26

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6)

1. A blinds:

6. Bob and Tumbler run “quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (qi,ϵi,Yi) of the real puzzles correctly Alice learns ϵ*,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

Fair exchange/contingent payment for an RSA puzzle solution to z*:
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z*
2. Tumbler reveals ϵ* if and only if Alice pays.

2. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

3. Reveals fake puzzles
by sending solutions.

5. Checks fake puzzles
values “H(X) = Y”
correctly computed.

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = 1/(280)
m = # of valid transactions = 42

n = # of invalid transactions = 42

Alice

z*

I can’t tell which B’s
are real or fake.

2. Solves/ encrypts:
 for i in m+n:
 ϵi = RSA-1(SK, Bi)
 qi = Enc(Xi, Si)
 Yi = H(Xi)

(q1,Y1),(q2,Y2),(q3,Y3),...

(P1, P2, … Pn)

(X2, X5, X11, …)
4. Reveals Xi
of fake puzzles.

6. A proves all real puzzles
unblind to same puzzle z*

(R1, R2, … Rm)

Transaction offer
 H(X1) = Y1 AND H(X3) AND H(X4) … for

Transaction fulfill
 X1, X3, X4, ...

1. Makes m real puzzles:
 for i in m: Di = Blind(z*, Ri)
...and n fake puzzles:
 for j in n: Fi = RSA(PK, Pi)

Shuffle(D1,D2 …, Dm, F1, F2, …, Fn)
= (B1,B2,B3, … Bn+m)

(X1, X3, X4, …)
7. decrypts q’s
learns ϵ*

Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(280)
m = # of real puzzles = 15
n = # of fake puzzles = 285

TumbleBit: Puzzle-Promise-Protocol

27

Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

At the end of this protocol: Bob should be convinced that for a (z, c):
 1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ
 2. AND the key ϵ is the solution to the RSA-puzzle z.
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

TumbleBit: Puzzle-Promise-Protocol

28

Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6)

1. B sends: a mix of hashes of valid and invalid claim transactions.

6. Bob and Tumbler run “quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (ϵi,σi) of the valid transactions correctly Bob learns a σ/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

At the end of this protocol: Bob should be convinced that for a (z, c):
 1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ
 2. AND the key ϵ is the solution to the RSA-puzzle z.
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

2. T Signs & Encrypts σ:
for Bi in B:
 σi = Sign(Bi)
 zi = RSA-1(SK,ϵi), ci = Enc(ϵi,σi)

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

4. T Reveals: ϵi for
invalid transactions.

ϵ2,ϵ3,ϵ5
5. B checks: invalid
transactions σi are
correctly computed.

T1,T2,T3,T4,T5,T6
3. B: reveals
transactions.

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

TumbleBit: Puzzle-Promise-Protocol

29

Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious
and takes Alice2’s bitcoin
and gives Bob3 nothing?

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6)

1. B sends: a mix of hashes of valid and invalid claim transactions.

6. Bob and Tumbler run “quotient protocol” ensuring that:
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
 (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (ϵi,σi) of the valid transactions correctly Bob learns a σ/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

At the end of this protocol: Bob should be convinced that for a (z, c):
 1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ
 2. AND the key ϵ is the solution to the RSA-puzzle z.
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:

 z
i
 = RSA-enc(ϵ

i
)

 σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi)

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

2. T Signs & Encrypts σ:
for Bi in B:
 σi = Sign(Bi)
 zi = RSA-1(SK,ϵi), ci = Enc(ϵi,σi)

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

4. T Reveals: ϵi for
invalid transactions.

ϵ2,ϵ3,ϵ5
5. B checks: invalid
transactions σi are
correctly computed.

T1,T2,T3,T4,T5,T6
3. B: reveals
transactions.

This is why the protocol is hard,
otherwise Tumbler could convince Bob
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(280)
m = # of valid transactions = 42

n = # of invalid transactions = 42

