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TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous 

Payment Hub



Introduction

TumbleBit can be used as a classic Bitcoin tumbler:
● k-anonymity within a mix, 
● 4 transactions confirmed in 2 blocks (~20mins)

TumbleBit is:
1. Private: Unlinkable Bitcoin payments and k-anonymous mixing,
2. Untrusted: No one including Tumbler can steal or link payments.
3. Scalable (payment hub): scales transaction velocity and volume.
4. Compatible: Works with today's Bitcoin protocol.

When TumbleBit is used as a payment hub:
● Unlinkability within the payment phase,
● Payments confirmed in seconds,
● Payments are off-blockchain, 

... don’t take up space on the blockchain. 2

Two ways to use TumbleBit:

Why is compatibility hard? 
Our protocol must work with highly constrained Bitcoin scripts 
which provide two very limited cryptographic operations.
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Transaction: Escrow2
Output Script: 2-of-2 multisig 
Must be signed by Payment Hub and Bob
Refunded to Payment Hub: after 1 month

Transaction: Escrow1
Output Script: 2-of-2 multisig 
Must be signed by Alice and Payment Hub
Refunded to Alice: after 1 month

Background: Payment Hub
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HTLCs: Claim
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...But what if the hub is malicious, 
and takes Alice’s bitcoin and doesn’t pay Bob?Atomicity: If Claim1 and Claim2 happen atomically then theft is prevented.

Hash locks provide this property.

I don’t know x, so…
I can’t spend Claim2.

Alice, learn x to pay me.Bob, the value of x is....

Thus, using hash locked transactions or HTLCs a payment hub can prevent theft,
however this is provides no privacy against the payment hub.
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  Background: RSA Puzzles
● An RSA Puzzle is just a “textbook RSA encryption” of some value ϵ:

                                RSA(PK, ϵ) = z 

● Only the party that knows SK can solve RSA puzzles:
         RSA-1(SK, z) = RSA-1(SK, RSA(PK, ϵ)) = ϵ

2. Bob2 blinds his puzzle 
and requests a solution.

z2

RSA blinding can be used to blind RSA puzzles

1. Tumbler issues two puzzles.

3. Tumbler solves  
the blinded puzzle
and generates a
blinded solution ϵ*.

ϵ*

z* 

4. Bob2 finds the solution 
to z2 by unblinding ϵ*.

ϵ2 = Unblind(ϵ*)  

Tumbler can not link the blinded RSA puzzle it solves z* 
to any of the RSA puzzles it issued (z1, z2).

Tumbler
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z* = Blind(z2)  
RSA-1(SK,z*) = ϵ* 

Bob2 learns the solution ϵ2 to the puzzle z2



Fair exchange:
        for  ϵ*

Learn ϵ get 

TumbleBit: Protocol Overview
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q = Enc(X, ϵ*)
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Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X 
where Hash(X) = Y will allow her to learn ϵ*.



Fair exchange:
        for  ϵ*

Learn ϵ get 

TumbleBit: Protocol Overview

Alice Bob

σ

Transaction

Offer      for σ  

Transaction

Fulfill       for σ 

Fair exchange 1:
B: Gives σ
T: Gives 1 bitcoin

z*

ϵ*

Sig Condition: 
σ such that σ is a 
valid signature.

z*

X

Transaction
Offer H(x)=Y 

for     

Transaction
Fulfill X for 

Fair exchange 2:
A: Gives 1 bitcoin
T: Gives 1 ϵ*

Hash Condition: 
X such that 
Hash(X) = Y.

Tumbler
Puzzle Promise 

Protocol

Transaction
Escrow1

Transaction
Escrow2

z = RSA(PK, ϵ)
c = Enc(ϵ,σ) (z, c)

Bob, the solution ϵ to RSA puzzle z  
allows you to claim 1 Bitcoin.

Alice, I’ll sell a solution to an RSA 
puzzle of your choice for 1 Bitcoin.  

z*

Transaction
offer 

H(x) = Y

Transaction offer
     H(X) = Y for                 

ϵ*

Transaction

σ for    .    

Blind(z)

Dec(X, q) 
X

Transaction fulfill
         X                   

Unblind(ϵ*)

Puzzle
Solver Protocol ϵ* = RSA-1(SK,z*)

q = Enc(X, ϵ*)
Y = H(X)Y, q

Dec(ϵ, c)σ

z*

Puzzle-Solver-Protocol:
Tumbler convinces Alice the preimage X 
where Hash(X) = Y will allow her to learn ϵ*.

           If Tumbler corrupts z, c, X,or q it can cheat Alice or Bob!
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                 Privacy offered the TumbleBit Payment Hub

Tumbler’s view: 
(1) payer of each payment, (2) # of payments each payee received.

Unlinkability def: 
All interaction graphs compatible with the tumblers view are equally likely.
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TumbleBit: Classic Tumbler
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TumbleBit can also be a classic tumbler:

Allows users to privately move bitcoins to an unlinked fresh address.

Fresh Addr 1 

Fresh Addr 2 

Fresh Addr 3 

Old Addr 1 

Old Addr 2 

Old Addr 3 

This is also sometimes known as a mixing service or mix.
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To run TumbleBit as a Classic Bitcoin Tumbler:
● Each payer just makes one payment.
● Each payee accepts only one payment.
● # of payers = # of payees.
● payer and payee pairs are the same user

Provides k-anonymity:
Where k = # of payers = # of payee.



Compared to other Tumblers
Bitcoin-Compatible 

Schemes
(aka “Mixing Services”)

Vulnerable to bitcoin theft

Intermediary                                           
breaks 

anonymity

Mixing takes 
hours
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Xim

Vulnerable to DoS & 
Sybil Attacks 

Limited Anonymity 
 

TumbleBit
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We wrote a proof-of-concept implementation of the Classic 
Tumbler:

● We are working on improving it and making it user friendly.
● Sourcecode and a development roadmap are available on 

Github.
● We are working to improve it to make it user ready.We “tumbled”  800 payments:

 You can see the transactions on the mainnet blockchain.
TXIDs avaliable in our paper.

Our implementation is Performant (per TumbleBit payment):
● 326 KB of Bandwidth, 
● Puzzle-Solver takes ~0.4 seconds to compute
● Total time depends on network latency:

No latency ~0.6 seconds. 
Boston to Tokyo ~6 seconds (clear) and ~11 seconds 
...(both parties use TOR)



Conclusion
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● TumbleBit is works with today’s Bitcoin:
○ We have run TumbleBit on Bitcoin’s Blockchain (mainnet).

TumbleBit provides private scalable trustless payments 
via Bitcoin.
.

1.

TumbleBit provides,
 private untrusted scalable payments via today’s Bitcoin

1. Private: Unlinkable or  k-anonymous payments
2. Trustless: Tumbler can not steal or link payments.
3. Scalable (payment hub): scales Bitcoin’s transaction velocity and volume.

We have running code (for TumbleBit classic tumbler):

● Our code runs on Bitcoin’s mainnet blockchain.
● We have published our code on github.
● ...and we working to improve it and make TumbleBit easy and safe to use.

We are hiring a full time engineer (Boston),
email me if interested.
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Ask questions on twitter: @Ethan_Heilman

Source code + roadmap:  https://github.com/BUSEC/TumbleBit

Paper:  https://eprint.iacr.org/2016/575.pdf
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Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious 
and takes Alice2’s bitcoin 
and gives Bob3 nothing?

    

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6) 

1. A blinds: 

6. Bob and Tumbler run “quotient protocol” ensuring that: 
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
                             (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (qi,ϵi,Yi) of the real puzzles correctly Alice learns ϵ*,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

Fair exchange/contingent payment for an RSA puzzle solution to z*:
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z*
2. Tumbler reveals ϵ* if and only if Alice pays.

2. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

3. Reveals fake puzzles
by sending solutions.

5. Checks fake puzzles 
values “H(X) = Y”
correctly computed.

This is why the protocol is hard, 
otherwise Tumbler could convince Bob 
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = 1/(280)
m = # of valid transactions = 42 

n = # of invalid transactions = 42

Alice

z*

I can’t tell which B’s 
are real or fake.

2. Solves/ encrypts:
   for i in m+n:
      ϵi = RSA-1(SK, Bi)
      qi = Enc(Xi, Si)
      Yi = H(Xi)
         

(q1,Y1),(q2,Y2),(q3,Y3),...

(P1, P2, … Pn)

(X2, X5, X11, …)
4. Reveals Xi 
of  fake puzzles.

6. A proves all real puzzles
unblind to same puzzle z*

(R1, R2, … Rm)

Transaction offer
  H(X1) = Y1 AND  H(X3) AND H(X4) … for                 

Transaction fulfill
         X1, X3, X4, ...                   

1. Makes m real puzzles:
   for i in m: Di = Blind(z*, Ri)
...and n fake puzzles:
   for j in n:  Fi = RSA(PK, Pi)

Shuffle(D1,D2 …, Dm, F1, F2, …, Fn)
= (B1,B2,B3,  … Bn+m)

(X1, X3, X4, …)
7. decrypts q’s
learns ϵ*
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Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious 
and takes Alice2’s bitcoin 
and gives Bob3 nothing?

    

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6) 

1. A blinds: 

6. Bob and Tumbler run “quotient protocol” ensuring that: 
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
                             (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (qi,ϵi,Yi) of the real puzzles correctly Alice learns ϵ*,
thus to cheat Alice, Tumbler must corrupt all the real and none of the fake puzzles.

Fair exchange/contingent payment for an RSA puzzle solution to z*:
1. Alice pays Tumbler if and only if Tumbler solves RSA puzzle z*
2. Tumbler reveals ϵ* if and only if Alice pays.

2. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

3. Reveals fake puzzles
by sending solutions.

5. Checks fake puzzles 
values “H(X) = Y”
correctly computed.

This is why the protocol is hard, 
otherwise Tumbler could convince Bob 
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = 1/(280)
m = # of valid transactions = 42 

n = # of invalid transactions = 42

Alice

z*

I can’t tell which B’s 
are real or fake.

2. Solves/ encrypts:
   for i in m+n:
      ϵi = RSA-1(SK, Bi)
      qi = Enc(Xi, Si)
      Yi = H(Xi)
         

(q1,Y1),(q2,Y2),(q3,Y3),...

(P1, P2, … Pn)

(X2, X5, X11, …)
4. Reveals Xi 
of  fake puzzles.

6. A proves all real puzzles
unblind to same puzzle z*

(R1, R2, … Rm)

Transaction offer
  H(X1) = Y1 AND  H(X3) AND H(X4) … for                 

Transaction fulfill
         X1, X3, X4, ...                   

1. Makes m real puzzles:
   for i in m: Di = Blind(z*, Ri)
...and n fake puzzles:
   for j in n:  Fi = RSA(PK, Pi)

Shuffle(D1,D2 …, Dm, F1, F2, …, Fn)
= (B1,B2,B3,  … Bn+m)

(X1, X3, X4, …)
7. decrypts q’s
learns ϵ*

Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(280)
m = # of real puzzles = 15 
n = # of fake puzzles = 285
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Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious 
and takes Alice2’s bitcoin 
and gives Bob3 nothing?

    

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

At the end of this protocol: Bob should be convinced that for a (z, c):
     1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ 
     2. AND the key ϵ is the solution to the RSA-puzzle z. 
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

This is why the protocol is hard, 
otherwise Tumbler could convince Bob 
by just sending (c,z,ϵ,σ) and let Bob check.



TumbleBit: Puzzle-Promise-Protocol

28

Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious 
and takes Alice2’s bitcoin 
and gives Bob3 nothing?

    

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6) 

1. B sends: a mix of hashes of valid and invalid claim transactions.

6. Bob and Tumbler run “quotient protocol” ensuring that: 
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
                             (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (ϵi,σi) of the valid transactions correctly Bob learns a σ/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

At the end of this protocol: Bob should be convinced that for a (z, c):
     1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ 
     2. AND the key ϵ is the solution to the RSA-puzzle z. 
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

2. T Signs & Encrypts σ:
for Bi in B: 
    σi = Sign(Bi)
    zi = RSA-1(SK,ϵi), ci = Enc(ϵi,σi)
    

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

4. T Reveals: ϵi for
invalid transactions.

ϵ2,ϵ3,ϵ5
5. B checks: invalid 
transactions σi are
correctly computed.

T1,T2,T3,T4,T5,T6
3. B: reveals
transactions.

This is why the protocol is hard, 
otherwise Tumbler could convince Bob 
by just sending (c,z,ϵ,σ) and let Bob check.
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Bob

Tumbler

Transaction: Claim3
1 Bitcoins to Alice, 3 Bitcoin to Bob

Sign(Alice-SK, Claim3)

Sign(Bob-SK, Claim3)
3 BTC to Bob

But what if the hub is malicious 
and takes Alice2’s bitcoin 
and gives Bob3 nothing?

    

z

z

z

Why prevent Bob from learning σ?
σ allows Bob to gain 1 BTC from Tumbler,
Thus, Alice must pay for Bob to learn σ.

Tumbler

T-PK,
T-SK.

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

B = {R,F,F,R,F,R}

ϵ2,ϵ3,ϵ5

B = H(T1),H(T2),H(T3),H(T4),H(T5),H(T6) 

1. B sends: a mix of hashes of valid and invalid claim transactions.

6. Bob and Tumbler run “quotient protocol” ensuring that: 
if Bob learns ϵ1, Bob can use that knowledge to learn ϵ4,ϵ6.
                             (ϵ4/ϵ1 mod N, ϵ6/ϵ4 mod N)

If Tumbler computes any (ϵi,σi) of the valid transactions correctly Bob learns a σ/gets paid,
thus to cheat Bob, Tumbler must all corrupt all the valid and none of the invalid transactions.

At the end of this protocol: Bob should be convinced that for a (z, c):
     1. The ciphertext c decrypts to σ under a key ϵ i.e Dec(ϵ,c) = σ 
     2. AND the key ϵ is the solution to the RSA-puzzle z. 
The protocol should never: allow Bob to learn a valid σ (without paying).2. Tumbler signs the real and fake transactions.

For all B
i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

3. Tumbler signs the real and fake transactions.
For all B

i
 in B:    

     z
i
 = RSA-enc(ϵ

i
)

     σ
i
=Sig(T-SK, B

i
), ci = Enc(ϵi,σi) 

    

2. T: Encrypts signatures:
for Bi in B: σi = Sign(Bi)

2. T Signs & Encrypts σ:
for Bi in B: 
    σi = Sign(Bi)
    zi = RSA-1(SK,ϵi), ci = Enc(ϵi,σi)
    

(z1,c1),(z2,c2),(z3,c3),(z4,c4),(z5,c5),(z6,c6)

4. T Reveals: ϵi for
invalid transactions.

ϵ2,ϵ3,ϵ5
5. B checks: invalid 
transactions σi are
correctly computed.

T1,T2,T3,T4,T5,T6
3. B: reveals
transactions.

This is why the protocol is hard, 
otherwise Tumbler could convince Bob 
by just sending (c,z,ϵ,σ) and let Bob check.

Probability(Tumbler successfully cheats) = (m+n choose m) = ~1/(280)
m = # of valid transactions = 42 

n = # of invalid transactions = 42


